If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2-29x+4=0
a = 30; b = -29; c = +4;
Δ = b2-4ac
Δ = -292-4·30·4
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-19}{2*30}=\frac{10}{60} =1/6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+19}{2*30}=\frac{48}{60} =4/5 $
| m+13+m-9+m=43 | | 11x+10x=2 | | -(x)^2-3x=17010 | | B/i=4 | | 12n-4(-5n+7)=108 | | 5/12=x/7 | | b-48/9=61/8 | | 12n-4(-5n+7=108 | | 3(x+3)-4=3(x-4) | | (2x)+2-3x= | | z-101/7=135/6 | | 3.1x-14.81=4.1 | | 1/2(4y+12)=10 | | m-15=18 | | 9a+3-8a=20 | | 2+3x=2(x+2) | | 45x9/5+32=F | | x2=-8x | | Cx9/5+32=F | | (x-6)^2=64 | | 4(t-)-3=6t-13 | | 1/4z=31/2 | | -2x-9=x+3 | | 4=12/z | | 5.49+z=19.49 | | -x+49=2x+22 | | 13z−12z−z+4z=16 | | 20=5+3n | | 15n=4 | | 12=t-5 | | 6y-8=-7+(5+8y)+120 | | (4x+2)-2x=12 |